Energy landscape statistics of the random orthogonal model

M Degli Esposti, C Giardinà and S Graffi

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S Donato 5, 40127 Bologna, Italy

Received 30 July 2002, in final form 28 October 2002
Published 12 March 2003
Online at stacks.iop.org/JPhysA/36/2983

Abstract

The random orthogonal model (ROM) of Marinari–Parisi–Ritort [13, 14] is a model of statistical mechanics where the couplings among the spins are defined by a matrix chosen randomly within the orthogonal ensemble. It reproduces the most relevant properties of the Parisi solution of the Sherrington–Kirkpatrick model. Here we compute the energy distribution, and work out an estimate for the two-point correlation function. Moreover, we show an exponential increase with the system size of the number of metastable states also for non-zero magnetic field.

PACS numbers: 05.50.+q, 75.10.Nr

1. Introduction: review of the model and outlook

Random (symmetric) matrices out of a given ensemble can be taken as interaction matrices for Ising spin models. The most famous example is the Sherrington–Kirkpatrick (SK) model of spin glasses, where the elements are i.i.d. Gaussian variables with properly normalized variance. The aim of this paper is to discuss a very specific example of these spin glass models, which also share some interesting connections with number theory, and show how random matrix theory could be useful to investigate its properties.

For the sake of simplicity, let us start with a very concrete question: let $N \geq 1$ be a positive integer and denote Σ_N the space of all possible configurations of N spin variables

$$\Sigma_N = \{ \sigma = (\sigma_1, \ldots, \sigma_N), \sigma_j = \pm 1 \} \quad |\Sigma_N| = 2^N.$$

Given $k = 1, \ldots, N - 1$, denote C_k the correlation function:

$$C_k(\sigma) = \sum_{j=1}^{N} \sigma_j \sigma_{j+k} \quad \text{where} \quad j + k := (j + k - 1 \mod N) + 1$$
and define the Hamiltonian function
\[H(\sigma) = \frac{1}{N} \sum_{k=1}^{N-1} \sigma_k^2. \]

For each \(N \) the ground state of the Hamiltonian \(H \) can be looked at as the binary sequence with lowest autocorrelation and finding it has some relevant practical applications in the theory of efficient communication (see [4] and references in [13]).

It is remarkable that no concrete procedure for reproducing the ground state for generic \(N \) is known, but ad hoc constructions based on number theory exist for very specific values of \(N \): if \(N \) is a prime number with \(N = 3 \mod 4 \), then the sequence of the Legendre symbols
\[(\sigma_N) = \begin{cases} 1, & \text{if } j = x^2 \mod N \text{ and } -1 \text{ otherwise}. \end{cases} \]
gives the ground state of the system [9, 13].

Through the use of the discrete Fourier transform, it is not difficult to see [13, 16] that the previous problem is in fact equivalent to finding the ground state for the so-called sine model, which represents our starting point:
\[H(\sigma) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} \sigma_i \sigma_j. \]

Here \(J \) is the following \(N \times N \) real symmetric orthogonal matrix with almost full connectivity:
\[J_{ij} = \frac{2}{\sqrt{1+2N}} \sin \left(\frac{2\pi ij}{2N+1} \right) \quad i, j = 1, \ldots, N. \]

Here again, if \(2N + 1 \) is prime and \(N \) odd, the Legendre symbols \(\sigma_j = j^N \mod 2N + 1 \) give the ground state of the system for these very specific values of \(N \).

A natural approach is to extend the study of the ground state to the more general thermodynamic behaviour of the model in terms of the inverse temperature \(\beta = \frac{1}{T} \). As usual, the two basic objects are the partition function
\[Z_J(\beta) := \sum_{\sigma \in \Sigma_N} e^{-\beta H(\sigma)} \]
and the free energy density (at the thermodynamic limit)
\[f_J(\beta) = \lim_{N \to \infty} -\frac{1}{\beta N} \log Z_J(\beta). \]

It is important to remark now that even if there is no randomness in the system, the ground state of the model looks like an output of a random number generator and the numerics of its thermodynamic properties resembles those of disordered systems. This observation was in fact the starting point of an approach developed in [13, 14, 16] where this model is seen as a particular realization of a disordered model where the coupling matrix is chosen at random from a suitable set of matrices.

Definition 1. The random orthogonal model (ROM) with magnetic field \(h \geq 0 \) is the disordered system with energy
\[H_J(\sigma) = -\frac{1}{2} \sum_{ij} J_{ij} \sigma_i \sigma_j + h \sum_j \sigma_j \]
where the coupling matrix J is chosen randomly in the set of orthogonal symmetric matrices2:

$$J = ODO^{-1}.$$

Here O is a generic orthogonal matrix and D is diagonal with entries ± 1. The numbers ± 1 are the eigenvalues of J.

The natural probability measure μ on this set is the product of the canonical Haar measure on the orthogonal group by the discrete measure on the diagonal terms.

We will use the notation $\langle \cdot \rangle$ to denote the average with respect to the measure μ. In particular, we are interested in the quenched (i.e., the average is performed after taking the logarithm) free energy density:

$$\langle f_J(\beta) \rangle = -\lim_{N \to \infty} \frac{1}{\beta N} \langle \log Z_J(\beta) \rangle.$$

(2)

The average over the ROM disorder is performed by the following fundamental formula, which has been obtained by adapting the results in [12] (see also [2]) valid for the unitary case to the orthogonal one [14]. For any $N \times N$ symmetric matrix A:

$$\langle \exp \left\{ \frac{1}{2} \text{Tr} (JA) \right\} \rangle = \exp \left\{ N \text{Tr} \left(\frac{G(A)}{N} \right) \right\} + R_N(A)$$

$$\approx \exp \left\{ N \sum_{j=1}^{N} G(\lambda_j) \right\}$$

(3)

where $R_N \to 0$ in the thermodynamic limit $N \to \infty$, the λ_j are the (real) eigenvalues of $\frac{1}{N} A$ and $G(x)$ is given by

$$G(x) = \frac{1}{4} \left[\sqrt{1 + 4x^2} - \ln \left(\frac{1 + \sqrt{1 + 4x^2}}{2} \right) - 1 \right].$$

The same formula is exact for the SK model, i.e Gaussian independent symmetric couplings, with

$$G_{SK}(x) = \frac{x^2}{4}.$$

Note that $G(x) = G_{SK}(x) + o(x)$. For example, up to the tenth order

$$G(x) = \frac{x^2}{4} - \frac{x^4}{8} + \frac{x^6}{6} - \frac{5x^8}{16} + \frac{7x^{10}}{10} + O(x^{11}).$$

The ROM model has been chosen in such a way that, at least for not too small temperatures, the deterministic sine model and the one with quenched disorder share a common behaviour. More precisely, the couplings are always of order $N^{-\frac{1}{2}}$; the diagrams contributing to the thermodynamic limit of the high-temperature expansion for the free energy density have the same topology and they can all be expressed in terms of positive powers of the trace of the couplings. By construction, the high-temperature expansion of the free energy density $f_J(\beta)$ in powers of β is then independent of the particular choice of the symmetric orthogonal

2 In the ROM model generic matrices have non-zero diagonal elements. Often these terms will be set to zero and orthogonality will be reconstructed in the large-N limit.
matrix J and it does coincide with the annealed average with respect to μ. In particular [16]:

$$-\beta \langle f_J (\beta) \rangle = \log 2 + G(\beta).$$

Besides SK and in general the large class of p-spin models, whose couplings have a Gaussian distribution, the ROM model provides another interesting class of disordered mean-field spin glasses. This model has received considerable interest in recent years, especially in the context of the structural glass transition. Indeed it can be seen as the random version of a wide class of models (for example, the fully frustrated Ising model on a hypercube or the above-mentioned sine model) which despite having a non-random Hamiltonian display a strong glassy behaviour [3, 9, 13]. This model has been studied in the framework of replica theory [14], where it was shown that replica symmetry is broken and there are many equilibrium states available to the system. Mean-field (TAP) equations have been derived for this model by resumming the high-temperature expansion and the average number of solutions of these equations has been studied in [16].

It is a well-established fact that the observed properties of mean-field spin glass models are due to the large number of metastable states the system possesses. Despite the lack of full mathematical justification, the Parisi scheme of replica symmetry breaking yields a clear picture of equilibrium statistical properties: states with similar macroscopic behaviour have vastly different spin configurations, and the relaxation times for transition between them are large. As a consequence, the ground state is accessible only on very long time scales. It is worth mentioning that rigorous results validating the Parisi solution have been accumulating in recent times.

For example, Guerra and Toninelli [10] have proved the existence of the thermodynamic limit, i.e. the existence of the limit for quenched average of the free energy (equation (2)). See also [6] where the result has been extended to general correlated Gaussian random energy models. Finally, more recently [11], Guerra showed that the Parisian ansatz represents at least a lower bound for the quenched average of the free energy.

However there is not yet an unambiguous way to identify those metastable states which are relevant for thermodynamics in the infinite volume limit. At zero temperature, the metastable states can be defined as the states locally stable to single spin flips (definition recalled in section 3 below) and the calculations are relatively straightforward. Complete analysis of the typical energy of metastable states and the effects of the external field have been undertaken both for the SK model [7, 18, 19] and for general p-spin model [15]. The zero-temperature dynamics for the deterministic sine model has been instead studied in [9].

At non-zero temperature the identification is less obvious and most studies [5, 17] rely on the counting of the number of solutions to the TAP equations [20]. According to the general belief, one can associate with each metastable state a solution of the TAP equation, but the inverse is not true: a TAP solution corresponds to a metastable state only if it is separated from other solutions by a barrier of height diverging with the volume.

It appears, however, that the calculations in the presence of an external field have not yet been carried out even at zero temperature. One expects, in analogy with the SK model, the existence of an AT line [1] indicating the onset of replica symmetry breaking. In this paper, we study at length the effects of the magnetic field on the structure of local optima of the energy landscape. We are able to use these results to shed further light on the nature of the AT instability at zero temperature.

In section 2, we study the statistics of energy levels over the whole configuration space. We compute the energy distribution of a generic spin configuration and the pair correlations for a given couple of spin configurations with a fixed overlap. In section 3, we analyse metastable states at zero temperature, also in the presence of an external field.
2. Statistics of energy levels

We start by analysing the statistical features of the landscape generated by the energy function (1). In this section, we will always consider zero magnetic field $h = 0$. Let us begin with the energy distribution for a single fixed configuration.

2.1. Distribution of energy

Let $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_N)$ denote a given configuration with energy $H_J(\sigma)$. The probability $P_\sigma(E)$ is then given by

$$P_\sigma(E) = \langle \delta(E - H(J, \sigma)) \rangle.$$

By gauge invariance, the probability $P_\sigma(E)$ does not depend on the spin configuration σ and will be denoted by just $P(E)$. In fact: $H(J, \sigma) = H(J', \sigma')$ and $P(J) = P(J')$ where $J'_{ij} = J_i \sigma_i \sigma_j \sigma_j'$.

Introducing the integral representation for the δ function

$$\delta(x - x_0) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dk \ e^{k(x - x_0)}$$

we get

$$P(E) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dk \ e^{kE} \langle e^{\frac{1}{2} \sum_{i,j=1}^N k J_{ij} \sigma_i \sigma_j} \rangle$$

and we can apply formula (3) to average over disorder considering the matrix $A_{ij} = k \sigma_i \sigma_j$.

It is easy to prove that A admits only one non-zero, simple eigenvalue $\lambda = k N$, so that

$$P(E) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dk \ exp \left[N \left(\frac{ke}{N} + G(k) \right) \right].$$

In the large-N limit the integral can be evaluated using the saddle-point method. Clearly, the equation

$$\frac{E}{N} + G'(k) = \frac{E}{N} + \frac{k}{1 + \sqrt{1 + 4k^2}} = 0$$

admits the solution $\bar{k} = \frac{2EN}{4k^2 - N}$.

This gives

$$P_{\text{ROM}}(E) = C_N \exp \left[N \left(\frac{\bar{k}E}{N} + G(\bar{k}) \right) \right]$$

$$= C_N \left(1 - \left(\frac{2E}{N} \right)^2 \right)^{N/4}$$

$$\sim C_N \exp \left[-\frac{E^2}{N} - \frac{2E^4}{N^3} - \frac{16E^6}{3N^5} + \ldots \right]$$

where the normalization constant C_N is given by (Γ denotes the Euler gamma function)

$$C_N = \frac{N \sqrt{\pi \Gamma(1 + \frac{N}{2})}}{2\Gamma(\frac{2N}{2})}.$$

As a comparison, in the case of the SK model one finds exactly the Gaussian distribution:

$$P_{\text{SK}}(E) \sim \exp \left(-\frac{E^2}{N} \right).$$
To check the validity of formula (3) which has been used to average over disorder, we computed $P_{\text{ROM}}(E)$ for a relative small ROM ($N = 100$) numerically. For a given spin configuration, random disorder realizations $J = O DO^{-1}$ were generated by using an orthogonal matrix O obtained from a Gaussian matrix through the Gram–Schmidt orthogonalization algorithm and coin tossing for the diagonal D. The resulting distribution of energies was binned and is shown as the data points in figure 1.

As it should be, the support of $P_{\text{ROM}}(E)$ is almost fully contained in the interval $[-N/2, N/2]$. Indeed, the orthogonality of J imposes simple bounds on the energy of any spin configuration: the lower bound $-N/2$ (resp. upper bound $N/2$) is reached if and only if σ is an eigenvector of J corresponding to the eigenvalue +1 (resp. −1).

2.2. Two-point energy correlation

We consider now the probability $P_{\sigma,\tau}(E_1, E_2)$ that two configurations $\sigma, \tau \in \Sigma_N$ have energies E_1 and E_2, respectively. Gauge invariance implies that this probability can only depend on the overlap between the two configurations:

$$q(\sigma, \tau) = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \tau_i.$$

Proceeding as above, we get

$$P_{\sigma,\tau}(E_1, E_2) = \langle \delta(E_1 - H(J, \sigma))\delta(E_2 - H(J, \tau)) \rangle$$

$$= \frac{1}{(2\pi i)^2} \int_{-\infty}^{i\infty} dk_1 \int_{-\infty}^{i\infty} dk_2 \exp(k_1 E_1 + k_2 E_2)$$

$$\times \left\langle \exp \left(\frac{1}{2} \sum_{i,j=1}^{N} J_{ij}(k_1 \sigma_i \sigma_j + k_2 \tau_i \tau_j) \right) \right\rangle. \quad (6)$$
Consider now the matrix $A_{ij} = k_1 \sigma_i \sigma_j + k_2 \tau_i \tau_j$ which has two non-zero simple eigenvalues

$$
\lambda_{\pm} = \frac{N}{2} \left[(k_1 + k_2) \pm \sqrt{(k_1 - k_2)^2 + 4k_1 k_2 q^2} \right].
$$

Applying formula (3) we obtain

$$
P_{\sigma, \tau}(E_1, E_2) = \frac{1}{(2\pi i)^2} \int_{-i\infty}^{i\infty} d\lambda_1 \int_{-i\infty}^{i\infty} d\lambda_2
\times \exp \left[N \left(\frac{k_1 E_1}{N} + \frac{k_2 E_2}{N} + G(\lambda_+ / N) + G(\lambda_- / N) \right) \right].
$$

The saddle-point method yields the equations

$$
\frac{E_j}{N} + \frac{1}{N} G' \left(\frac{\lambda_+}{N} \right) \frac{\partial \lambda_+}{\partial k_j} + \frac{1}{N} G' \left(\frac{\lambda_-}{N} \right) \frac{\partial \lambda_-}{\partial k_j} = 0 \quad j = 1, 2.
$$

For the SK model, one immediately finds

$$
\frac{E_1}{N} + \frac{1}{2} (k_1 + k_2 q^2) = 0 \quad \frac{E_2}{N} + \frac{1}{2} (k_2 + k_1 q^2) = 0
$$

with solutions

$$
k_1 = \frac{2(E_1 - E_2 q^2)}{N(-1 + q^2)} \quad k_2 = \frac{2(E_2 - E_1 q^2)}{N(-1 + q^4)}.
$$

This yields the well-known formula [8] ($\sigma, \tau \in \Sigma_N$ fixed, with overlap q):

$$
P_{SK}(E_1, E_2) = \left(\frac{\sqrt{1 - q^2}}{N\pi} \right) \exp \left[\frac{-(E_1 + E_2)^2}{2N(1 + q^2)} \right] \exp \left[\frac{-(E_1 - E_2)^2}{2N(1 - q^2)} \right]

= P_{SK} \left(\frac{E_1 + E_2}{\sqrt{2(1 + q^2)}} \right) P_{SK} \left(\frac{E_1 - E_2}{\sqrt{2(1 - q^2)}} \right).
$$

(7)

For asymptotically uncorrelated configurations, $q = 0$, one clearly gets a product measure, whereas one recovers complete degeneracy when $q = 1$:

$$
P_{SK}(E_1, E_2) = P_{SK}(E_1) P_{SK}(E_2) \quad q = 0
$$

(8)

and

$$
P_{SK}(E_1, E_2) = P_{SK}(E_1) \delta(E_2 - E_1) \quad q = 1.
$$

(9)

In general, one has

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E_1 E_2 dP_{SK}(E_1, E_2) = \frac{Nq^2}{2}.
$$

For the ROM model, it can immediately be seen that the analogue of (8) and (9) holds true with the single energy distribution $P_{ROM}(E)$ given by (4). For a generic value of $0 < q < 1$, a first crude estimate is achieved by using the stationary points of the Gaussian approximation and $G(\chi) = \frac{\chi^2}{2} - \frac{\chi^4}{4}$ to evaluate the exponent. This yields

$$
P_{ROM}(E_1, E_2) \sim P_{SK}(E_1, E_2) \exp \left[-\Phi_q(E_1, E_2) \right]
$$

where

$$
\Phi_q(E_1, E_2) := -\frac{8E_1^2 E_2 q^4 - 8E_1 E_2^3 q^4 + E_1^3 (1 + 2q^2 - q^4)}{N^3(-1 + q^2)^2 (1 + q^2)^4}

+ \frac{E_1^2 (1 + 2q^2 - q^4) + 2E_1^2 E_2^2 q^2 (2 - q^2 + 4q^4 + q^6)}{N^3(-1 + q^2)^2 (1 + q^2)^4}.
$$

Further corrections can now be calculated, but we do not know a systematic way of doing it at all orders.
3. Zero-temperature metastable states

Metastable states at zero temperature are defined as the configurations whose energies cannot be decreased by reversing any of the spins [9]. Since the energy change \(\Delta E_i \) involved in flipping the spin at site \(i \) is given by

\[
\Delta E_i = 2 \left(\sum_j J_{ij} \sigma_i \sigma_j + h \sigma_i \right)
\]

the constraint a configuration \(\sigma \) must satisfy in order to be metastable is

\[
\sum_j J_{ij} \sigma_i \sigma_j + h \sigma_i > 0 \quad \forall i = 1, \ldots, N.
\]

The average number of metastable configurations \(\langle N(e, h) \rangle \) with a given energy density \(e = E/N \) is then

\[
\langle N(e, h) \rangle = \sum_{\{\sigma\}} \prod_{i=1}^{N} \left[\int_{0}^{\infty} d\lambda_i \delta \left(\lambda_i - \sum_j J_{ij} \sigma_i \sigma_j - h \sigma_i \right) \right] \times \delta \left(Ne + \frac{1}{2} \sum_{i,j} J_{ij} \sigma_i \sigma_j + h \sum_i \sigma_i \right).
\]

(10)

One should really calculate the average value of the logarithm of the number of metastable states, and hence introduce replicas because this is an extensive quantity; indeed, as pointed out in [5], the introduction of a uniform magnetic field should induce strong correlations among the metastable states. However, we shall proceed to a direct calculation of \(\langle N(e, h) \rangle \) as it suffices to bring out the most relevant features of the problem.

Introducing integral representations for the \(\delta \) functions we have

\[
\langle N(e, h) \rangle = \sum_{\{\sigma\}} \prod_{i=1}^{N} \left[\int_{0}^{\infty} d\lambda_i \int_{-\infty}^{\infty} \frac{dk_i}{2\pi i} e^{\sum_{i} k_i(h\sigma_i - \lambda_i)} \right] e^{\sum_{i} \lambda_i \sum_{j \neq i} \Delta \delta \left(\sigma_i \sigma_j \right)} e^{\sum_{i} \lambda_i \sum_{j \neq i} \Delta \delta \left(\sigma_i \sigma_j \right)}.
\]

To apply formula (3) for averaging over disorder we define the matrix \(A_{ij} = \left(\hat{z} + k_i \right) \sigma_i \sigma_j + \left(\hat{z} + k_j \right) \sigma_j \sigma_i \). The non-zero eigenvalues of \(A_{ij} \) are easily calculated and read

\[
\mu_{\pm} = \sum_i \left(\frac{\hat{z}}{2} + k_i \right) \pm \sqrt{N \sum_i \left(\frac{\hat{z}}{2} + k_i \right)^2}
\]

so that we obtain

\[
\langle N(e, h) \rangle = \sum_{\{\sigma\}} \prod_{i=1}^{N} \int_{-\infty}^{\infty} \frac{dk_i}{2\pi i} e^{\sum_{i} \lambda_i k_i(k_{i1} - k_{i2})} e^{\sum_{i} \lambda_i \left(\frac{\hat{z}}{2} + k_i \right)} \times \exp \left\{ N \left[G \left(\frac{1}{N} \sum_i \left(\frac{\hat{z}}{2} + k_i \right) + \frac{1}{N} \sum_i \left(\frac{\hat{z}}{2} + k_i \right)^2 \right) \right.
ight.
\]

\[
+ G \left(\frac{1}{N} \sum_i \left(\frac{\hat{z}}{2} + k_i \right) - \frac{1}{N} \sum_i \left(\frac{\hat{z}}{2} + k_i \right)^2 \right) \right\}.
\]

(11)
We now perform the trace over spin configurations. Define
\[v = \frac{1}{N} \sum_i \left(\frac{z}{2} + k_i \right) \quad w = \frac{1}{N} \sum_i \left(\frac{z}{2} + k_i \right)^2 \]
and impose the constraints via two Lagrange multipliers. We have
\[\langle N(e, h) \rangle = \frac{1}{(2\pi i)^N} \int_{-i\infty}^{i\infty} dz \int_{-i\infty}^{i\infty} du \int_{-i\infty}^{i\infty} dw \int_{-i\infty}^{i\infty} dx \int_{-i\infty}^{i\infty} dy \]
\[\times \exp \left\{ N \left[ze + \frac{zx}{2} + \frac{yz^2}{4} \right] \right\} \]
\[\times \exp \left\{ N [-xv - yw + G(v + \sqrt{w}) + G(v - \sqrt{w})] \right\} \]
\[\times \prod_{i=1}^{N} \left[\int_{0}^{\infty} d\lambda_i \int_{-i\infty}^{i\infty} \frac{dk_i}{\pi i} e^{\lambda_i k_i^2 + k_i (z - \lambda_i + yz) \cosh(h(z + k_i))} \right]. \] (12)
The integrals over the \(k_i \) are now Gaussian
\[\langle N(e, h) \rangle = \frac{1}{(2\pi i)^N} \int_{-i\infty}^{i\infty} dz \int_{-i\infty}^{i\infty} du \int_{-i\infty}^{i\infty} dw \int_{-i\infty}^{i\infty} dx \int_{-i\infty}^{i\infty} dy \]
\[\times \exp \left\{ N \left[ze + \frac{zx}{2} + \frac{yz^2}{4} \right] \right\} \]
\[\times \exp \left\{ N [-xv - yw + G(v + \sqrt{w}) + G(v - \sqrt{w})] \right\} \]
\[\times \prod_{i=1}^{N} \left[\int_{0}^{\infty} d\lambda_i \int_{-i\infty}^{i\infty} \frac{dk_i}{\pi i} e^{\lambda_i k_i^2 + k_i (z - \lambda_i + yz) \cosh(h(z + k_i))} \right]. \] (13)
and the integrals over the \(\lambda_i \) can be performed in terms of the complementary error function
\[\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt \]
so that we find
\[\langle N(e, h) \rangle = \frac{1}{(2\pi i)^N} \int_{-i\infty}^{i\infty} dz \int_{-i\infty}^{i\infty} du \int_{-i\infty}^{i\infty} dw \int_{-i\infty}^{i\infty} dx \int_{-i\infty}^{i\infty} dy \]
\[\times \exp \left\{ N \left[ze + \frac{zx}{2} + \frac{yz^2}{4} \right] \right\} \]
\[\times \exp \left\{ N [-xv - yw + G(v + \sqrt{w}) + G(v - \sqrt{w})] \right\} \]
\[+ \ln \left\{ \frac{1}{2} \left(e^{hz} \text{erfc} \left(\frac{-x + yz + h}{2\sqrt{y}} \right) + e^{-hz} \text{erfc} \left(\frac{-x + yz - h}{2\sqrt{y}} \right) \right) \right\}. \] (14)
As usual the calculation is concluded by carrying out a saddle-point integration. The rhs of equation (14) is to be extremized (in the complex plane) with respect to the five variables \(z, v, w, x, y \).

3.1. **Total number of metastable states**

Here we study the total number of metastable states \(\langle N(h) \rangle \) (irrespective of the energy) as a function of the field. Writing
\[\log \langle N(h) \rangle = A(h) + B_N(h) \] (15)
Figure 2. $A_{SK}(h)$.

where

$$B_N(h) \rightarrow N \rightarrow \infty 0.$$

$A(h)$, in the thermodynamic limit ($N \rightarrow \infty$), can be calculated by setting $z = 0$ in equation (14), which becomes

$$\langle N(h) \rangle = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{+\infty} dv \int_{-\infty}^{+\infty} dw \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy$$

$$\times \exp \left\{ N \left[-x v - y w + G(v + \sqrt{w}) + G(v - \sqrt{w}) \right] + \ln \left(\frac{1}{2} \left(\text{erfc} \left(\frac{-x + h}{2\sqrt{y}} \right) + \text{erfc} \left(\frac{x - h}{2\sqrt{y}} \right) \right) \right) \right\}. \quad (16)$$

In the case of the SK model one recovers the well-known one-variable saddle-point equation [7]:

$$x = \frac{\exp[-x^2/2] \cosh(h x)}{\int_{-x}^{\infty} \exp[-t^2/2] \cosh(h t) \, dt}.$$

If x_c is the solution to the previous equation:

$$A_{SK}(h) = \log(2) - \frac{1}{2} (x_c^2 + h^2) + \log \left(\frac{1}{(2\pi)^{1/2}} \int_{-x_c}^{\infty} \exp[-t^2/2] \cosh(h t) \, dt \right)$$

in particular $A_{SK}(0) \sim 0.199$, whereas for large h one has $x \sim (\frac{2}{\pi})^{1/2} e^{-h^2/2}$ and consequently $A_{SK} \sim 1 / e^{-h^2}$ (see figure 2).

We now turn to the ROM model. We first perform a numerical investigation by doing an exhaustive enumeration of spin configurations and keeping track of metastable states. The system-size dependence of $\log \langle N(h) \rangle$ is plotted for different values of h in figure 3 (left). The data are fitted to formula (15), ignoring possible finite size corrections. The resulting $A_{ROM}(h)$ are shown in figure 3 (right) as data points. Moreover, the saddle-point equations corresponding to (16) were solved numerically, and the result is shown as the solid curve in figure 3 (right). The agreement between theory and simulations is very good in spite of the fact that we used admittedly small systems ($N < 30$).

As one would expect, metastable states disappear as the magnetic field is increased, since it introduces a tendency towards ferromagnetic behaviour. Most of the processes are the confluence of a metastable state to another with a larger drop of free energy.

3 The relatively small values of N used are not sufficient to characterize more precisely the corrections to the linear term (see figure 3, left). We plan to do this in a future paper.
Figure 3. Numbers of metastable states. $\log\langle N(h) \rangle / N$ versus N at different magnetic fields, see legend (left). Data points show the field dependence of $A_{\text{ROM}}(h)$ obtained from the fits, while the full curve indicates the analytical results in the thermodynamic limit (right).

Figure 4. $A_{\text{SK}}(h)$ (bottom), $A_{\text{ROM}}(h)$ (middle) and $\frac{1}{2} e^{-h^2}$ (top). (This figure is in colour only in the electronic version)

Figure 5. Plot of $e^{h^2} A_{\text{ROM}}(h)$ for values of the magnetic field h between 1 and 5.

Note that we have $A_{\text{ROM}}(0) \sim 0.285$ [16], while the asymptotic behaviour for large magnetic field h does coincide with the Gaussian case (see figures 4 and 5).

This indicates that $A_{\text{ROM}}(h)$ still remains non-zero for arbitrarily large h and hence for any finite value of the external magnetic field the number of metastable states grows exponentially.
with the system size N. As pointed out in [7] for the SK model, this result is in agreement with the observation that the AT instability occurs for all finite h at zero temperature.

Acknowledgments

We thank one of the referees for useful comments and suggestions. This work has been partially supported by the European Commission under the Research Training Network MAQC, n HPRN-CT-2000-00103 of the IHP Programme, and by the University of Bologna, Funds for Selected Research Topics.

References